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Numerical results are presented for the modelling of the spread of heat as a passive 
scalar contaminant on the basis of a second-order closure model in the mixing layer 
with an asymmetric mean-temperature profile superimposed on it. Present 
calculations are in reasonable agreement with experimental data on the region of 
countergradient transport for heat where the direction of heat diffusion is opposite 
to the mean gradient diffusion and where the production of temperature fluctuation 
intensity is negative. 

1. Introduction 
I n  a series of experimental studies of classical flows of the mechanics of turbulence 

like jets, wakes, mixing layers, channel flows (Batchelor 1950; Fabris 1979; Beguier, 
Fulachier & Keffer 1 9 7 8 ~ ;  Beguier et al .  19783) the violationoflocal phenomenological 
relations is found for turbulent flows of the gradient-diffusion type (relations of the 
Boussinesq type), i.e. those in the form of gradients of mean quantities. The points 
a t  which t)he turbulent flux (e.g. - (u.v) = 0 or - (Ov) = 0 in the case of planar flow) 
and the mean gradient (aU/ay = 0 or a@/ay = 0 respectively) vanish prove to be 
displaced from one another. The so-called displacement zone is formed. Within this 
zone the turbulent flux and the mean gradient have the same sign. This means that 
within the limits of the displacement zone the heat (or impulse) transfer occurs in 
the gradient direction (that is in the direction opposite to the transfer direction due 
to the mean gradient). From the point of view of the gradient-transfer mechanism 
in the spirit of the Boussinesq phenomenological law this situation would correspond 
to a negative coefficient of turbulent transport. 

The zone of displacement arises in flows with asymmetrical mean profiles (Beguier 
et al. 19783) as well as in the flows with symmetric mean profiles (Batchelor 1950; 
Fabris 1979) of some statistical properties of the turbulent flow. According to direct 
measurements (Beguier etal. 1978a), the turbulence production (9 = - (uv) aU/ay) or 
the production of the intensity of temperature-field fluctuations (You = - ( O v )  aQ/ay) 
is negative in the zones of displacement. I n  the thermally non-uniform turbulent 
mixing layer with an asymmetrical mean-temperature profile in whose zone of 
displacement the production of the intensity of temperature fluctuations proves 
to be negative, the temperature could be considered as a passive contaminant (due 
to  a small absoute difference in temperatures that took place in experiments). 
Therefore the temperature did not influence substantially the flow dynamics, and, 
in particular, the production of the turbulence energy. The negative production of 
the intensity of temperature fluctuations in such a mixing layer is a consequence of 
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the dynamics of the eddy flow structure. Only the asymmetrical transport of flow 
properties determined by large-scale eddies seems to cause the abovementioned 
anomalous phenomena within the zone of displacement. The spectral analysis of the 
displacement zone has shown (Beguier et al. 19786) that the cospectrum of the 
transverse component of the turbulent heat flux can be conventionally subdivided 
into two parts. The cospectrum part corresponding to high frequencies (small-scale 
eddies) can be kept within the limits of the classical scheme of transport after the 
mechanism of gradient diffusion, whereas the low-cospectrum frequencies (large-scale 
edies) cause the heat transfer in the direction of the mean temperature gradient. This 
transfer (opposite sign) just represents the basic mechanism ofthe negative production. 
The presence of the two domains in the cospectrum seems to confirm the assumption 
of Townsend (1956) on the bimodal structure of the turbulent transfer mechanism. 
According to this assumption the turbulent flux (of the momentum, enthalpy etc.) 
can be roughly represented in the form of a sum of two parts. The part corresponding 
to the transport by small-scale eddies is described by local relationships of the 
Boussinesq type, and for the other part responsible for the transport by large-scale 
eddies it was proposed by Townsend (1956) to introduce the notion of ‘bulk 
convection ’. However, the model representation of the ‘ bulk convection ’ (cf. e.g. 
Batchelor 1950; Beguier et al. 19783) reduces in the process of its practical realization 
to the assumption on the smallness of the displacement zone, requires additional 
empirical information, and involves consideration of additional parameters of the 
turbulent flow (incompleteness of the expression obtained for the turbulent flux). This 
notion makes it impossible to obtain a realizable model for the investigation of the 
non-local effects due to turbulent transport in the numerical simulations of the 
development of various turbulent flows. 

All the phenomenological relationships of the gradient-diffusion type employed for 
the modelling of the mechanism of turbulent transport have in their physical 
background an analogy with the kinetic theory of gases. Carrying through this 
analogy further, it can be thought that  the turbulent transport by large-scale eddies 
which is responsible, in particular, for the development of local zones of negative 
production (in asymmetrical flows), is from the point of view of the kinetic theory the 
transport at large free-path length. In  this case the Fourier law for the heat flux and 
the rheologieal Stokes equation of state for the friction stress do not hold for the limit 
laws a t  small free-path length. I n  the kinetic theory of gases the stress tensor is a 
dependent variable in the descriptions of the transport a t  large free-path length (Grad 
1949). This variable satisfies a certain differential conservation equation. The heat 
flux is also a dependent variable. This approach to  the description of turbulent 
transport has already been developed to a certain extent, and has been successfully 
applied also to the computation of turbulent flows in the presence of displacement 
zones (Hanjalic & Launder 1972; Kurbatskii & Onufriev 1979). Therefore, if an 
analogy with the kinetic theory of transport a t  large free-path length is carried 
through, i t  can be assumed that also in the phenomenological theory of turbulent 
transport the computation of, for example, tensor components of Reynolds stresses 
and the components of the turbulent heat-flux vector from corresponding differential 
transport equations (having the meaning of conservation laws) is a description of the 
transport a t  a large scale of correlation in turbulent flow. And in this sense such a 
description takes into account the non-local character of the turbulent-transport 
mechanism. A corroboration of this follows from the comparison presented herein of 
the experimental data of Beguier et al. (1978b) with the results of the numerical 
modelling of turbulent transport in the mixing layer with an asymmetrical mean- 
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temperature profile on the basis of an approximate system of differential transport 
equations including the equations for the components of the Reynolds stress tensor 
and for the components of the turbulent heat-flux vector. This comparison shows that 
in accordance with the experimental data a displacement zone is found which has 
within its limits a negative production of the intensity of turbulent temperature 
fluctuations and which has turbulent enthalpy transport in the direction opposite to  
that of the motion due to the mean-temperature gradient. 

2. Turbulent-transport equations 
An approximate equation system for the turbulent transport of statistical properties 

of the velocity field and of the scalar field (temperature or concentration) is presented 
in Kurbatskii (1975). Therefore the corresponding equations are written in what 
follows without explanations. Only some notations will be changed; they will be 
specified. 

As in Beguier et al. ( 1 9 7 8 ~ )  we consider the development of a plane turbulent 
flow - the mixing layer arising a t  the edge of a slightly heated plane jet discharged 
into the surroundings on the one hand and a uniform flow moving a t  a speed equal 
to  the jet speed on the other hand (figure 1) .  The absolute difference between the 
temperatures of the jet and the ambient gas was insignificant in the experiments of 
Beguier et al. (1978b). As a result of this the temperature could be considered as a 
passive ‘contaminant ’, as had already been mentioned above (the buoyancy did not 
influence the motion of the medium substantially), and the mean temperature 
distribution superimposed upon the velocity field in this flow had an asymmetrical 
character. 

The equation system for the moments of the velocity field in the approximation 
of a thin shear layer for a plane developed free turbulent flow, neglecting the effects 
of molecular viscosity, has the form 

In the system (2.1) Uis the mean longitudinal velocity, vis the mean (mass-weighted) 
transverse flow velocity, -(uv) the Reynolds stress, r = ALE-$ is the specific 
timescale for the turbulent motion, E = $((u2) + ( u 2 )  + (w2)) is the mean density (per 
unit mass) of the kinetic energy of turbulence, u ,  v, w are turbulent velocity 
fluctuations to the mixing layer (figure 1 )  ; L is the integral turbulence scale, A M 4, 
v1 M 0.5, a x 1 are empirical constants whose numerical values are found from the 
solution of some simplest problems of the turbulent transport (Kurbatskii 1975). In  
the domain of self-similarity of statistical characteristics of the turbulence of the 
mixinglayer, the longitudinal component ofthe mean momentum can be approximated 
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FIGURE 1 .  Definition sketch of flow field. 

by an expression (pu)  NN ( p )  U with an error not exceeding05 yo (Beguier et al. 1978 b ) .  
The angular brackets mean the statistical averaging, and ( p )  is the constant 
magnitude of density. 

For the transverse component of the mean momentum the mass-weighted 
expression 

should be taken, because the second item on the right-hand side of (2.2) is not always 
negligibly small. I n  the expression (2.2) 0 is the mean temperature, (8w) is the 
transverse component of the turbulent heat flux, V is the mean value of the transverse 
component of the flow velocity. I n  accordance with Beguier et al. (1978b) the 
approximations of the turbulent heat flux (pwt9) x ( p )  (8v) and of the turbulent 
momentum flux (puw) NN ( p )  (uw) have an error that  does not exceed 1 %. The system 
of equations (2.1) for the turbulent transport is written in a complete form (with 
respect to  the moments) ; the processes of turbulent diffusion (the third one-point 
moments) appearing in the equations for the second moments of the system (2.1) are 
replaced, approximately, by the second moments employing the hypothesis of fourth 
moments in the way indicated by, for example, Hanjalic & Launder (1972). That is, 
by using the following anisotropic relationship for the third moments: 

where p1 is a numerical constant whose value was taken to be equal to  0.11. This 
value was found by numerical optimization, and was employed in various stimulations 
of turbulent transport. Since the equation for mass onservation has the form 
aU/ax+aP/ay = 0 for a plane mixing layer, i t  appeared to be convenient to  find 
the mean-weighted transverse flow velocity from the expression 

The velocity Urn of the uniform flow a t  its downstream boundary was taken as a 
scaling velocity for the flow in the mixing layer. The expression for the turbulence 
scale L (the correlation scale in whose limits the element of the fluid makes a 
correlated fluctuation displacement in the medium) was taken in the algebraic form 
consistent with the self-similar character of its change in the downstream direction : 
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L - x--5,. This law of the change in the scale in the far domain of the mixing layer 
corresponds to  the one observed experimentally (x, is the virtual origin of the mixing 
layer). Only the quantity for the turbulence scale is employed; the intermittence in 
the flow is not taken into account. For convenience of comparisons with ex- 
perimental data, the expression for the scale L was determined by some specific 
conventional width 1, of the mixing layer which was taken as a distance between the 
points y = yo.& and y = yo.9 (figure 1 )  a t  which U = 0.5Um and U = 0.9Um 
respectively: L = KZ, (where K x 0.5 - an empirical constant). The system (2.1) is 
written in a non-dimensional form by using Urn as a velocity scale, and as a 
characteristic lengthscale the height d of the slot from which the heated jet was 
discharged was used. In  comparisons of the computed distributions of the mean 
quantities and of the moments with experimental data, the self-similar variable 
7 = ( y - y o ) / l ,  was employed. 

The equations of the turbulent transport of statistical properties of the temperature 
field in the same approximation of a thin shear layer neglecting the effects of 
molecular heat conduction have the form (Kurbatskii 1975) : 

I n  (2.5), (2.6) 0 is the mean temperature in the mixing layer, 6, is an empirical 
constant in the term describing the scalar dissipation of the intensity of turbulent 
temperature fluctuations (@). The numerical value of the constant b, x 0.042 was 
found from the solution of a problem on the determination of the distribution of the 
temperature-fluctuation intensity in the thermal turbulent mixing layer formed 
behind a partially heated lattice in the uniform turbulent flow. The value of the 
constant v2 is taken to  be equal to 0.5. The difference Om-@, between the 
maximum temperature in the mixing layer and the ambient temperature (figure 1 )  
was taken as the mean temperature scale. For comparisons with experimental data 
of Beguier et al. (19786) the mean quantities and the moments of the temperature 
field found from the solution of the systems (2.5), (2.6) were represented by using a 
self-similar coordinate qe = ( y - y o ) / l o .  I n  this expression y o  is the coordinate of the 
maximum in the mean-temperature profile, and 1, is the scale characterizing the width 
of the mean-temperature distribution in some section of the mixing layer: the 
distance between the points at which the mean-temperature value is equal to half 
its maximum value is taken to  be equal to 21, (figure 1).  

As for the velocity field, the complete form of the equation system (2.5) has been 
obtained by using an approximate anisotropic closure relationship for the third mixed 
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moment of the velocity and of the temperature and by using the generalized 
hypothesis on the fourth moments : 

where p 2  is a constant to be found by the numerical optimization. I ts  numerical value 
was taken to be equal to 0.15. The closure relationship for the process of diffusion 
ofthe transverse component of the turbulent heat flux following from (2 .7)  has the form 

The relation (2 .8)  is employed in the second equation of the system (2.5) to obtain 
its closed form. The closed form of the system (2 .6)  is obtained by using the 
generalized hypothesis of fourth moments : 

( u K u U e 2 )  = <uKuU> <e2> + 2 ( u K e )  ( u U e > *  (2 .9)  

That is, the fourth moment (u,uu88) in the equation for the process of turbulent 
diffusion of the temperature-fluctuation intensity, of magnitude (e2uU), is re- 
placed by the second moments with the aid of the relation (2 .9) .  Thus the statistical 
characteristics of the temperature field in the mixing layer are found by the successive 
solution of two complete (uncoupled) equation systems (2 .5)  and (2.6) for 0, (ev), 
and ( O z ) ,  ( e2v) respectively. 

We now make a few remarks about the quasinormality hypothesis (the hypothesis 
of fourth moments, or Millionshchikov's hypothesis). At present there are no accurate 
and detailed experimental data on the initial distributons of third moments. As a 
consequence of this, full and final conclusions regarding Millionshchikov's hypothesis 
cannot be drawn. Nevertheless, the critical analysis (Orszag 1970) of the quasinormal 
closure of the equation system for moments in the case of homogeneous and isotropic 
turbulence leads to a conclusion that in this case the quasinormality hypothesis does 
not ensure a sufficient decay (or weakening) of the eddies by virtue of their nonlinear 
interactions: the spectral transport proves to  be reversible everywhere and leads to 
an oscillatory behaviour, and this is displayed in the excessive generation of the third 
moments and the appearance of negative values of the spectral density of the 
turbulence energy as the time increases. However, there remains the fact that the 
application of the quasinormality hypothesis in various problems of turbulent 
transport in flows with a permanent source of turbulence energy production (by virtue 
of the shear and the buoyancy), alongside accurate approximations of correlations 
with pressure fluctuations (e.g. in the equations for the third moments having 
(Kurbatskii &, Onufriev 1979) the relaxation form possessing the property of an 
irreversible decay and eliminating the abovementioned oscillatory behaviour) guar- 
antees that the third moments will not exceed their physically admissible values. Of 
course, the assertion stated above has a heuristic character, but the results of 
computations carried through (cf. e.g. Hanjalic & Launder 1972; Kurbatskii & 
Onufriev 1979; Kurbatskii 1975) seem to confirm it. 

An interesting feature of the equations (2 .5)  and (2 .6)  for the moments of the 
temperature field is the fact that  the system (2.6) is of a completely hyperbolic type 
(this is a quasilinear system of first-order partial differential equations being 
hyperbolic after Petrovskii). The system has two real characteristic roots 
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although it contains in itself a physically irreversible mechanism of scalar dissipation 
for the functions ( e 2 )  and (Pv). The system (2.5) has a double ‘boundary-layer’ 
characteristic = 0 ( x  = const), generated by an equation of parabolic type; the 
turbulent heat flux and one real (different from the trivial one) characteristic 
A, = U/v(dx:dy = U / 8 )  coinciding with the streamline and generated by the 
equation for the mean temperature 0. Owing to the presence of a real characteristic 
A,, the system (2.5) cannot be related to the parabolic type. The same is also valid 
for the system of equations (2.1) for the moments of the velocity field, which has the 
streamline as one characteristic and the triple ‘ boundary-layer ’ characteristic. 

For the numerical integration of the equation systems (2.1), (2.5) and (2.6) the 
method of finite differences has been employed. By virtue of the abovementioned 
mathematical properties of the equations, the development of an efficient numerical 
algorithm represents, generally speaking, an independent and complicated problem. 
However, the main purpose of the present work was to elucidate the capacity for 
‘work’ of the transport equations (2.5), (2.6) for the modelling of the non-local 
mechanism of turbulent transport (in asymmetrical free turbulent flows). Therefore 
we used the simplest first-order (of course, not the most efficient) implicit-difference 
scheme possessing the property of absolute computational stability (the latter 
property has been established experimentally). The details of corresponding finite- 
difference approximations of the second-order differential operators of the equations 
(Z.l), (2.5) and (2.6) can be found in Kurbatskii (1975). The difference scheme is 
effectively realized by a vector recurrence method (on the rectangular Eulerian grid). 
The accurate (experimental) initial data for the mean quantities and moments sought 
for are unknown. I n  the process of numerical solution the parameter distributions, 
being close in some sense to  the experimental ones, were set as the initial data. This 
circumstance did not represent any serious difficulty for the development of the 
mixing layer considered here, because in the experiments of Beguier et al. (1978b) a 
self-similar character of the change in basic statistical characteristics of the turbulence 
field in the far region of the mixing layer (at x l d  2 10) had been established. 

3. Numerical results 
Numerical results of the modelling of turbulent momentum and heat transport in 

the mixing layer with an asymmetrical mean-temperature profile are presented in the 
form of graphs. 

As has already been noted, the zone of displacement is formed as a result of the 
mutual transverse displacement of the points a t  which the turbulent flux and the 
mean gradient vanish. A comparatively small width of this zone (about 15 yo of the 
conventional width 21,) imposes corresponding restrictions on the accuracy of 
numerical computations and, consequently, on the ability of finding the zone of 
displacement adequate to explain the experimental data. These restrictions proved 
to be rather rigid for the simple difference scheme employed; the distance along the 
longitudinal coordinate x that  was reached in the numerical solution corresponded 
to  the section having x l d  M 15. The advancement to this section in the numerical 
solution could be identified, for example, by the magnitude of the characteristic 
transverse scale of the temperature field (in the section x/d M 15 the scale 1, z 1.1 (cf. 
figure 7 of Beguier et al. 1 9 7 8 ~ ) .  The change in the scales I, and I, in computations 
was linear with respect to the longitudinal coordinate, as in the experiments of 
Beguier et al. (1978b). 

The mean-temperature profile in the initial section was set to be close to the 
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Experimental data  from Beguier et al. (1978b) : ---, x/d = 30. Calculation : __ 

experimental one (cf. figure 3 of Beguier et al. 1978b); initial profiles of the second 
and third moments were set by using local equilibrium relationships (that is under 
the assumption on the balance between the production and dissipation). 

The measurements of statistical characteristics of the temperature field (in 
particular, the correlation coefficient R,, = (@v)/(Oz)~(v2)~, the value of the 
temperature-fluctuation intensity ( 02), as well as the production of temperature- 
fluctuation intensity POu( = - (ev)(a@/ay)) have been carried out in these 
experiments in one section, x/d = 30, (with the exception of the mean temperature 
profile, measured in some downstream sections). 

The numerical results in figures 2 4  (solid lines) show that physical effects of the 
non-local character of the turbulent transport mechanism - contragradient property 
of the heat flux (Ov) and negativeness of the production of temperature-fluctuation 
intensity POv - are forecast numerically by the turbulent-transport model and that 
the numerical results agree with experimental data (the points of different configu- 
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FIGURE 4. Profile of temperature-fluctuation intensity. Experimental data from 
Beguier et al. (1978b): ---, x/d = 30. Calculation: -. 

ration and dashed lines). However, there are quantitative discrepancies between 
calculations and experimental data. One of the reasons for these discrepancies is 
explained by the fact that  the numerical results for the second moments of the random 
temperature field R,,, (e2) as well as the values of production POu and experimental 
distributions of these quantities presented in figures 2 4  refer to different cross-sections 
of the mixing layer. 

Figure 2 shows the mean-temperature distribution across the mixing layer. Within 
the limits of the errors in positions of experimental points i t  can be thought that  an 
approximately self-similar character of the change in the mean-temperature profile 
in experiments had been established behind the section x ld  2 10. The computed 
mean-temperature profile has an asymmetrical form : the gradient is slightly steeper 
on the high-velocity side of the mixing layer (7, < 0). The distribution of the 
correlation coefficient R,, across the mixing layer is also depicted in figure 2. It can 
be seen that the width of the displacement zone obtained in computations agrees 
with the experimental one, thus showing the good resolving power of both the 
turbulent-transport model and the numerical method of its realization. Figure 3 
presents the second basic result of the present work: the distribution of the transverse 
component of the production of temperature turbulent-fluctuation intensity 
Po, E -(ev) aO/ay across the mixing layer. The main thing to which attention 
should be drawn in this figure is a negative-production zone of the calculated quantity 
Po, which agrees with the process of its formation measured directly in the 
experiments of Beguier et al. (1978 b) .  And, finally, figure 4 shows a distribution across 
the mixing layer of the magnitude of mean-square turbulent fluctuations of the 
temperature. Note that the use of the system of two transport equations for the second 
moment (e2) and the third moment (g2v) enabled us to obtain the correct form of 
the distribution (e2)1 curve having two specific maxima. Calculation data on 
statistical characteristics of the random velocity field in the mixing layer described 
by the system (2.1) of equations of turbulent transport are not presented here. These 
data are available in Kurbatskii (1975). 

4. Concluding remarks 
The general conclusion following from the present work is that, in the turbulent- 

transport phenomena where the diffusion processes of certain statistical character- 
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istics of random fields of velocity and temperature play a determining role for the 
dynamics in the whole flow field (e.g. the turbulence energy transport across the layer 
mixed by a fluctuating buoyancy force is contragradient over the whole layer width; 
cf. Willis & Deardorf 1974) or in its part (relatively small part of the flow field - the 
displacement zone AB in figure 2), the use of the differential equations of turbulent 
transport for the moments of second and third orders (see e.g. Kurbatskii 1979) enable 
one to describe the non-local character of the turbulent transport mechanism within 
the framework of the model realized. The recent results of Dekeyser (1982) on the 
modelling of turbulent heat transport in the plane jet with asymmetric mean- 
temperature profile are also in agreement with this conclusion. 
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